

VERSION 9.0

Article

General

Best Wishes For '83 1
Major Comparisons 1
ICI and Chemshare 1
New Version Numbers 1
Summary of 1982 Developments 2
Cost Comparison 3
Thermo/Physical Properties
VLE and LLE Data Base 4
Amines Enhancements 6
Enhanced Oil Recovery, CO_{2} 6
Ryan/Holmes Process 7
Peng-Robinson Data Base 9
DESIGN/2000
Oil-Gas-Water Separation 15
Oil-Water Entrainment 16
Glitsch Tray Sizing 17
Multiple Flash Module 19
Phase Envelope Map 22
Heating and Cooling Curves 25
Simplified Feeds 27
Feeds To Distillation Column 28
Separator Sizing 29
Line Sizing 32
Transmission Lines 35
REFINE
Quench Columns 39
Simplified Products Specifications 40

CHEMTRAN

AIChE Paper
 41

Transport Properties 41
Computer Services
ChemShare No Longer On U.C.C. 44
New Phone Number 44
VESSEL Program Available 44
New Output Options 45
Password Changes 45
PRIME with FORTRAN 45
PRIME Configuration 46
PRIME Performance Monitor 47
ChemShare Representatives 48

We would like to wish all our readers best wishes for 1983 . Most of our readers have had to deal with the bad economic downturn in 1982 and are probably glad it's behind us. The signs for 1983 are already looking better, so let's hope for a stronger economy next year.

Major Comparisons

Recently we have been involved in evaluations with some major oil companies who were interested in long term access to process simulation software. As far as we know, we were compared with SIMSCI, ASPEN and CONCEPT, and in each case we came out ahead. We normally never publish anything in our newsletter related to these comparisons, but these were so extensive and by such large firms, it is important for our readers to be kept abreast of ChemShare's performance. The companies who did recent evaluations were:

```
The Abu Dhabi National Oil Company The British National Oil Company The Malaysian National Oil Company SASOL - South African major oil from coal producer
```


ICI and ChemShare Work On Integrated Data Base

At the recent AIChE meeting in Los Angeles, John Liles of ICI announced that ICI and Chemshare will be working together to develop and market an integrated data base system which will link to ChemShare's process simulation software. This integrated system has the ability to link to other process engineering related programs such as HTRI and FRI, as well as provide graphics capabilities. The system is presently being developed at ICI's facility in England. Development and test marketing will be done during 1983, and we hope to be able to offer this product to you sometime in late 1983.

Easier Identification of your Program Versions

In our continued effort to supply you with the latest program features, we are simplifying the way we identify different versions of the programs. In the future, instead of referring to program version "08JUN82 or later" we will refer to a simple version number such as 9.0 .

New program features announced in newsletters will specify corresponding program versions in which they are available. The simpler numbering system avoids any confusion over version dates.

The next version released will be 9.0. The full release after that will be 10.0. However, if any additions are made to the 9.0 version before the release of 10.0 , the resulting versions will be identified as 9.1, 9.2 etc. The version numbered 9.2 will automatically contain all features included in versions 9.0 and 9.1.

Summary of Developments in 1982

During 1982, we have developed many new features and capabilities. We present these for your review. One of the major differences between our service and our competitors' is the ability to keep adding new technical features that are important to the users. If you compare our December 1981 and December 1982 newsletters with our competitors', you will see that our competition is trying to catch up to us by coming out with capabilities already available in Chemshare. If you don't have any of the newsletters for the past year, please call us for copies.
Feature
Simplified End Points
Feed Phase to Distillation
FORTRAN-In-Line Code
GLITSCH Tray Sizing
Heating/Cooling Curves
Line Sizing
LLE Data Base
Metric and SI Units
Molecular Weights
Multiple Flash Unit
Non-molar Product Specifications
Output Tables
Output Units
PENG-Robinson Interactions
Phase Map for detailed phase envelopes
Quench Units
Reid Vapor Pressure
Remarketing Prime Computers
Reverse Material Balance
Selexol Solvent
Separator Sizing
Simplified Feeds
Sour Water-caustics/acids
Transmission Lines
Viscosity Specifications
VIE Data Base
Water Decant
Water Entrainment

Newsletter	Program	Version
Dec. 82	REFINE	9.0
Dec. 82	DESIGN	9.0
Feb. 82	DESIGN	
Dec. 82	DESIGN	9.1
Dec. 82	DESIGN	9.0
May 82	DESIGN	9.0
Dec. 82	MIXDAT	
Dec. 82	DESIGN	9.0
May 82	REFINE	08 MAR 82
Dec. 82	DESIGN	9.0
May 82	DESIGN	08 MAR 82
Dec. 82	CHEMTRAN	9.0
Feb. 82	CHEMTRAN	01 MAR 82
Dec. 82	DESIGN	9.0
Dec. 82	DESIGN	9.0
Dec. 82	REFINE	9.0
May 82	DESIGN	08 MAR 82
May 82		
Feb. 82	DESIGN	
Feb. 82	DESIGN	20 JAN 82
Dec. 82	DESIGN	9.0
Dec. 82	DESIGN	9.0
May 82	DESIGN	08 MAR 82
Dec. 82	DESIGN	9.0
May 82	REFINE	08 MAR 82
Dec. 82	MIXDAT	
Dec. 82	DESIGN	9.0
Dec. 82	DESIGN	9.0

ChemShare has continued to hold the line on prices, while our competition has continued to raise their prices. If you use a competitor's software you are probably being overcharged compared to ChemShare's prices. Also most of our competitors bill through computer service bureaus, not directly as we do. The service bureaus add 5 to 15% more to each run for handing money. Therefore, when the competition raises its prices 10% the total increase to you is greater. For example, SIMSCI charges $\$ 1.35$ per PCU, (not $\$ 1.00$ as some people think), and then UCS adds 5% and CDC adds 15\% for handling charges on every run. Service bureaus also have monthly minimum charges for which you will be billed even if there is no usage. Where ChemShare handles the billing there is no monthly minumum.

Below, we present typical problems useful for comparing costs. You will notice a savings of 35 to 50% using Chemshare over SIMSCI. If any of our readers are using SIMSCI, let us review your typical applications and see if we can help reduce your costs.

CHEMSHARE at $\$ 1.40 / \mathrm{CCU}$

$$
60 \mathrm{CCU} \cdot \mathrm{~s}=\$ 84.00
$$

SIMSCI at $\$ 1.35 / \mathrm{PCU}$
108.09 PCU's
$\underline{\operatorname{UCS}(+5 \%)}$
$\$ 153.49 \quad \$ 167.54$

CHEMSHARE at $\$ 1.40 / \mathrm{CCU}$
62 CCU 's $=\$ 86.80$
SIMSCI at $\$ 1.35 / \mathrm{PCU}$
92.41 PCU 's

$\frac{\operatorname{UCS}(+5 \%)}{\$ 131.22}$	$\frac{\operatorname{CDC}(+15 \%)}{\$ 143.23}$

Now a VLE and a LLE Data Base

ChemShare announced in "Chemical Engineering Progress" (October, 1982) that we have entered into an agreement to exclusively market (except in Europe) the Dortmund VLE Data Base. This data base contains virtually all of the world's published and unpublished VLE data. We have now entered into a similar agreement with Fredenslund and his co-workers in Denmark to market their LLE data. These two important collections of data will be placed in one data base on our computer system.

Work is in progress on the data base which will allow you to have all this data literally at your fingertips. An interactive system is available that lets you search the entire data base at your terminal. Instead of poring over many sources and looking page by page for data you now merely type a command and let the computer do the work for you. With this data base you will be able to get answers to a number of questions instantly.

For example:

1. What VLE data is available for ethanol and benzene?
2. What data is available for these components for a specific temperature range and pressure range?
3. What data has been published for these systems since 1975?

This is just a sample of the variety of queries which can be made to the data base. In addition, ChemTran is available for correlating any data you find from the data search. Thus, there is no guess work about how well correlations work for your system. You can custom design the correlation for yourself and obtain a detailed error report and analysis of the correlation.

Furthermore, these data bases are not static. The Dortmund group and the Fredenslund group are continuing to collect and evaluate more data. This will be provided to ChemShare on a periodic basis and we will keep the data base updated.

The Data Bank now runs on our Prime computers, and is available on a pay-as-used basis, lease or sale. Conversions to IBM, CDC, or UNIVAC computers can be arranged. If you would like further information or technical details, call Dr. John Adams at (713)627-8945.

A sample output of 2 sets of data plus references that you get from this service is shown below.

VLE DATABASE SEARCH NO. 1

(1) FORMAL DEHYDE

CH 2 O
(2) WATER

H2 O
TEMP ERATURE =
40.00 DEGREE C

AUTHOR - BRANDANI V.,DI GIACOMO G.,FOSCOLO P.U.,
JOURNAL - IND. ENG.CHEM., PROCESS DES.DEV. 19,179(1980).
P MM HG Xl Yl

55.30	0.000000	0.000000
52.90	0.029500	0.000000
53.90	0.036400	0.000000
53.10	0.062700	0.000000
52.50	0.067200	0.000000
53.10	0.068800	0.000000
51.80	0.110300	0.000000
51.00	0.156600	0.000000
49.10	0.208800	0.000000
47.40	0.230200	0.000000
46.10	0.279500	0.000000

(1) FORMAL DE HYDE

CH 2 O
(2) WATER

TEMP ERAT URE $=\quad 50.00$ DEGREE C
AUTHOR - BRANDANI V.,DI GIACOMO G.,FOSCOLO P
JOURNAL - IND.ENG.CHEM., PROCESS DES.DEV. 19,179(1980).
P MM HG
X1

92.50	0.000000	0.000000
91.80	0.029500	0.000000
90.80	0.036400	0.000000
90.80	0.036400	0.000000
90.10	0.062700	0.000000
90.30	0.067200	0.000000
90.70	0.068800	0.000000
88.60	0.110300	0.000000
86.80	0.156600	0.000000
84.40	0.208800	0.000000
83.30	0.230200	0.000000
80.50	0.279500	0.000000

Amines Enhancements

Our continuing effort to extend the amine correlations to higher loadings has been very successful. We have tested problems with loadings as high as 2.0 moles of acid gas per mole of amine, and there seems to be no practical upper limit to the loadings that can be handled.

Also, additional work with our rigorous distillation techniques has eliminated the need to enter special convergence commands for amine contactors on version 9.0 or later. For contactors (i.e. absorbers) $\operatorname{COMCON}=30,3$ is no longer required. These new capabilities are available now on our PRIME computer and will be available on other systems during the coming months. If you have been unable in the past to model your amine plant because of the limitations of earlier versions, please give us a call: We'd like to show you what our latest version can do.

Enhanced Oil Recovery With CO_{2}

Numerous studies are in the works for CO_{2} flooding of oil fields by many operating companies. ChemShare offers some unique thermodynamic capabilities for these studies which may not be apparent to the casual user of our services. We offer:

1. APISOAVE
2. DORTMUND VLE DATA BANK

The APISOAVE correlation contains VLE data covering a wide range of conditions where high concentrations of CO_{2} are found. This correlation has data for CO_{2} concentrations as high as 80% and has been installed in DESIGN/2000 for over a year. All you need to do to run a phase envelope or flash to check the correlation for your mixture is add APISOAVEK in the GENeral section of DESIGN/2000.

The DORTMUND VLE Data Bank is another source of equilibrium data which may contain data for mixtures that can be closer to the mixture you may be studying. For those interactions where there is data, this data can be fit to the APISOAVE equation. For the remainder of the interactions where there is no data, the APISOAVE equation will calculate estimates of interactions based on the acentric factors and solubility parameters for each binary.

With either approach, any customer can easily review these systems and look at alternatives with extremely good results. These options are only available via ChemShare.

Modeling Ryan/Holmes Processes

Recently many people have expressed an interest in using ChemShare programs to model the Ryan/Holmes processes. This technique for separating acid gases from hydrocarbons uses cryogenic distillation with the addition of butane or heavier hydrocarbons. The additive prevents CO_{2} freeze-up and CO_{2}-ethane azeotrope formation. These processes have become increasingly important as we see more CO_{2} flooding for enhanced oil recovery and development of high CO_{2} gas fields.

We recently conducted extensive testing of ChemShare's APISOAVE and CO_{2} FREERE options for this application. We compared our results to those given in the paper presented by A. S. Holmes, et. al. at the 6lst Annual GPA Convention held in Dallas on March 15-17, 1982. In all of the cases tested we found our results were consistent with the Ryan/Holmes results. We also curve fit to the Peng-Robinson equation the extensive VLE data available in the literature for these high CO_{2} and H 2 S mixtures. The Peng-Robinson results were consistent with APISOAVE and Ryan/Holmes as well.

The plot on the following page is an example of the comparisons we made. Figure 4 in the Ryan/Holmes paper shows the temperature vs. composition profiles for a demethanizer column with n-butane added to the condenser to prevent freezing. In this case, a $2.4 \% \quad \mathrm{CO}_{2}$ overhead product was specified and the additive ratio was 8 moles/l00 moles feed. The column pressure was 600 psia and the feed composion was:

nitrogen	4.8%
methane	25.7%
carbon dioxide	50.0%
ethane	19.5%

As can be seen, the $T-X$ curves match quite closely. If you would like to review these comparisons in more detail, please call Bill Hensley at (713) 627-8945.

We have recently completed work on building a data base of PengRobinson binary interaction parameters. This data base has been installed in DESIGN/2000 and is accessed automatically then you enter the command:

BINary interaction PARameters = PENG1

in the GENeral section of your input file. The parameter PENGI indicates it is version 1 of this data base. We will continue to update this system and these updates will be accessible using this version number. However, older versions of the data base will continue to exist and can be accessed with the appropriate version number.

This data base contains binary interaction parameters for about 170 pairs of chemicals. It covers many of the common data needs such as $\mathrm{CO}_{2} \mathrm{H}_{2} \mathrm{~S}$, and N_{2} in natural gas mixtures as well as some systems like CO_{2} or $\mathrm{H}_{2} \mathrm{~S}$ with water. Table 1 below provides a list of all chemical pairs for which binary interaction parameters exist.

TABLE 1
PAIRS CF CHEMICAL VAICR EAVE PENG-ROBINSON BIRARY IMERACIICN PARANETERS ETORED IN TEE PENGI DATA BASE

PAIRS σ G GEMICAL VAICA BAVE PENG-ROBINS ON BINARY IMTERACTICN PARANETERS STORED IN TEE PENGI DATA BASE

CHEM	NAME
SEARE	OMP ONENT 1
NO.	

48 CABCN MONOXIDE

1052	CAFBON TETRAFLOORI DE
1087	CAFBONIL SuFITE
1154	CALORODIFLDOROMETEARE
1122	CHLOROP ENIAPLOOEOETEARE
1155	CHLOROT RIPLDOROMETEAR
1036	H-CRESCL
38	CYCLOEEXARE

1072 CYCLOEE XA WONE
7043 CYCLOEREEE

14 N-DECARE

1176 DICALORODIFLOORONETEANE

1028 1, 2-DI CHLOROETHANE

1005 DIETHYL ETHER

3047 DIFLDOROMETEARE
54 2,2-DI MET HYLB OTANE

55 2,3-DI MET HYL B UTAFE
4178 DIPERNYLETEANE
3 ETRANR

1114 TRIFLDOROMETEANE
METTRAE
4 PROPANE
1122 CHLOROP ENTAFLUOROETEANE 1176 DICBLORODIFLUORONETEANE

1154 CHLORODIFLDOROMETBANE
1176 DICALORODIFLUORONETEANE 1114 TRIFLDORONETBANE

METEMNE
49 CABON DIOXIDE
1072 CYCLOEEXANONE
7043 CYCLCEEXENE
1028 1, 2-DI CALOROETEANR 3 ETERNE
10 NHEXANE
2 METEAKE
8 N-P EMTANE
38 CYCLOEEXANE
38 CYCL OES XANE 1028 1,2-DICBLOROETBARE

6 N-B UTARE
49 CAFBCN DIOXIDE
3 以THANE
2 METERNE
49 CARBCN DIOXIDE
1154 CHLORODIFLUORONETEAN 1155 CHLOROT RIFLUORONETBANE 46 RITROGEN

38 CYCLOAEXANE 7043 CYCLOAR XENE

49 CARBAN DIOXIDE
3 EHENE
19 CABCN DIOXIDE
3004 AYYL ALOEHOL

3004 AMY ALCOHOL
METBARE
1002 ACETGNE
40 BENZENE N-B UTANE CAFBAN DIOXIDE CABEAN MONOXITE CYCLOEE XA NE
$\begin{aligned} 14 & \text { N-DECARE } \\ 1005 & \text { DIETHYL ETESR }\end{aligned}$
22 ETHYENE
11 N-HEPTAN
N-HEXANE N-HEXANE
HYDROGEN HYDROGEN SULPIDE
IS OB UTANE
METEANE
1021 NETEANOL
2003 NETHYL ACETATE
46 KIT TROGEN
12 N-OCTANE N-P ENTANF PROPANE PROP ANE
PROP YLERE

4 PROP ARE
65 ACETYENE
40 BENZENE
6 N-B UTANE
49 CARBCA DIOXI DE ETHANE N-HEP TAN

TABLE 1 (CONT TNUED)
 PARAMETERS STORED IN TER PENGI DATA BASE

CHEM	WAre
SEAPE	Crparerr 1
NO.	

1172 EELIDM

11 N-HEP TANE

5002 EPAFLUOROB ERZENE

10 N-HEXANE

CBEM
8ERER
no.
COMPONENI 2

1 HYDROGEN METERE MITPDGEN

R-HEP TANE
2 METBRNE
46 SITROGEN
PROPANE
40 BEREERE
N-B UTARE
49 CABON DIOXIDE
3 ErEARE
22 ETHYLERE
1172 ELITM
10 H-HEXANE
HYDROGEN METEANE METBANE
1049 2-P ENTANONE - PROPANE

40 BEnE Exz
10 N-HE MARE
39 YRTHYI CYCLOAE XANE
41 TOLUERE
3004 NYK NLOHOL
40 BERzENE
(N-B UTANE
49 CAFBON DIOXIDE
38 CxCloie xane
ETEANE
11 N-HEP TANE
5002 EEXAFLUOROB ENZ ENE
1 HYDROGEN
1019 ISOP FOP ANOL
2 METEARE
46 NITPOGEN
4 PROPARE TERTAMYL ALOOHOL

1 HYDROGEN

50 HYDROGEN SULFILE

5 is Co UTANE

6 N-BUPARE
49 Arsan dioxide
49 ARBAN DIOXIDE
48 CABCN MDNOXIDE ETEANE
ETHYERE
N-HEP TANE N-HEXANE METEANE
3175 1-METHYLNAP EIERLENE IITPOGEN PROP ANE PROP YEENE
1028 OUINCEINE
3147 TETRAL IN
41 TOLENE
49 CARACN DIOXIDE
48 CABCN MDNOXIDE
ETGANE is CB UTANE NTTROGEN WATER

6 N-B UTANE
49 CAFBCN DIOXIDE
3 ETBANE HYDROGEN SUPIDE METBANE KITROGEN PROP ANE
PROP YLIENE
49 arBan DIOXIDE
2 METBARE
46 NTTROGEN
N-P ENIARE PROP ARE

TABLE 1 (CONTINUED)
PAIRS CF CHENICAL WHICH BAVE PENG-ROBINSON BINARY INERACIICN PARAMETERS STOEED IN TEE PENGI DATA BASE

TABLE 1 (CONT INUED)
PAIRS GF GBEMICAL MHICA HAVE PENG-ROBINSAN BIMRY IMTERACTION PARAMETERS STORED IN THE PENGI DATA BASE

You can now decant water from a liquid hydrocarbon stream by using the VALVE or FLASH module. All you need to do is to code three product streams out of either module, and enter IMMisible $=62$ in the GENeral section. 62 is the component identification number for water. Stream 3 will contain the hydrocarbon phase and stream 4 the water phase.

With only 2 product streams the free water shows up in the liquid product, but the flowrate of the immiscible water will be reported in the detailed stream summaries. The liquid hydrocarbon stream will contain soluble water.

FLASHI $=\mathrm{FLO}, 1,-2,-3$
GENERAL
IMM=62

FLASHI=FLO, $1,-2,-3,-4$ GENERAL
$I M M=62$

The program calculates the solubilities of the hydrocarbons in the water steam according to reference (l) below, and then it calculates the solubility of water in the hydrocarbon stream using one of two methods. The default method for water solubility in hydrocarbons is the water in kerosene chart which is reference (2) below. Reference (3) will be used when you enter the following command in the GENeral section:

SOLubility of WATer $=$ COMponent basis
Since solubilities are a function of carbon to hydrogen weight ratio, you can override the calculated values for petroleum fractions in reference (3), by entering in the GENeral section:

CARbon to HYDrodgen weight ratio $j=$ value, where j is the component ID number

The water in kerosene correlation (2) is the default correlation and is reasonable for most hydrocarbon-water systems. For light hydrocarbons (such as propane) with water, reference (3) shows significant improvement in solubility prediction.

After the phases are separated, the hydrocarbons with the soluble water becomes the second product stream, and the immiscible water with the soluble hydrocarbons becomes the third product stream. Enthalpies as well as other physical properties will be recalculated.

This feature will be available on versions 9.0 or greater.
References:
(1) Calculator Programs for the Hydrocarbon Processing Industries, Vol.2, Gulf Publishing Co., p.41, (1982)
(2) API Data Book, Fig. 9Al.4, p.9-15, (1970)
(3) API Data Book, Equation 9Al.5-1, p. 9-17, (1970)

You can now decant water from a liquid hydrocarbon stream by using the VALVE or FLASH module. All you need to do is to code three product streams out of either module, and enter IMMisible $=62$ in the GENeral section. 62 is the component identification number for water. Stream 3 will contain the hydrocarbon phase and stream 4 the water phase.

With only 2 product streams the free water shows up in the liquid product, but the flowrate of the immiscible water will be reported in the detailed stream summaries. The liquid hydrocarbon stream will contain soluble water.

FLASH1=FLO,1,-2,-3
GENERAL
IMM=62

FLASH1=FLO, $1,-2,-3,-4$ GENERAL IMM=62

The program calculates the solubilities of the hydrocarbons in the water steam according to reference (l) below, and then it calculates the solubility of water in the hydrocarbon stream using one of two methods. The default method for water solubility in hydrocarbons is the water in kerosene chart which is reference (2) below. Reference (3) will be used when you enter the following command in the GENeral section:

SOLubility of WATer $=$ COMponent basis
Since solubilities are a function of carbon to hydrogen weight ratio, you can override the calculated values for petroleum fractions in reference (3), by entering in the GENeral section:

CARbon to HYDrodgen weight ratio j = value, where j is the component ID number

The water in kerosene correlation (2) is the default correlation and is reasonable for most hydrocarbon-water systems. For light hydrocarbons (such as propane) with water, reference (3) shows significant improvement in solubility prediction.

After the phases are separated, the hydrocarbons with the soluble water becomes the second product stream, and the immiscible water with the soluble hydrocarbons becomes the third product stream. Enthalpies as well as other physical properties will be recalculated.

This feature will be available on versions 9.0 or greater.
References:
(1) Calculator Programs for the Hydrocarbon Processing Industries, Vol.2, Gulf Publishing Co., p.41, (1982)
(2) API Data Book, Fig. 9Al.4, p.9-15, (1970)
(3) API Data Book, Equation 9Al.5-1, p. 9-17, (1970)

Oil-Water Entrainment

In addition to the equilibrium separation introduced above, non-equilibrium entrainment calculations are possible when the following commands are specified in the FLASH module:

WATer ENTrained in OIL (fraction type) = fraction of water phase entrained in the oil phase
and
OIL ENTrained in wATer (fraction type) $=$ fraction of oil entrained in water phase.

Three outlet streams must be coded when using the entrainment option.
Fraction type in these commands can be MOLar, MASs, or VOLume. MOLar is the default. The above two commands are independent of each other.

For example:

FLASH $1=F 32,1,-2,-4$
WAT ENT OIL (VOL) $=.02$
OIL ENT WAT $(V O L)=.0015$

This option is available on DESIGN/2000 versions 9.0 or greater.

We are pleased to announce that in cooperation with Glitsch Incorporated we have added the Glitsch short-cut techniques for tower diameter calculations. You now have two choices for column sizing calculations: the Smith-Dresser-Ohlswager option previously available, or the Glitsch option. The Glitsch option allows you to either specify or calculate the percent of flood and the number of passes. In the output shown below, the tray diameters are calculated from the Glitsch procedure.

GLITSCH SHORTCUT RESUUTS FOR TRAY DIAMETER, PASSES AND PERCENT FLOOD
USER-P ROV IDED SP ECIF ICAT IONS
PERCENT FLOOD $=0.00$
TRAY SPACING $=0.00$ IN
SYS TEM FACTOR $=0.00$
NO. OF PASSES $=0.00$
DEFAULT TRAY SPACING IS 24 IN IF NOT SPECIFIED. THE ORRREATION IS VALID FOR TRAY SPACINGS IN THE RANGE 12-48 IN.

IT IS IMPORTANT TO USE THE CORRECT SYSTEM FACTOR (GLI SYS =) FOR FOAMING ON THE TRAY. DEFAULT VALUE IS 1.0 WHICH IS APPROPRIATE FOR NON-FOAMING, REGULAR SYSTEMS. OTHER RECOMMENDED VALUES ARE :

OIL ABSORBERS, AMINE \& GLYCOL REGENE RATORS (MODERATE FOAMING) 0.85
AMINE AND GL YCOL ABSORBERS (HEAVY FOAMING) 0.73 MEK UNITS
CAUSTIC REGENERATORS

(SEVERE FOAMING)	0.60
(FOAM-S TAB LE)	0.30

TRA Y	DIAMETER FT	LIQ FROM GAL/MIN	$\begin{aligned} & \text { VAP TO } \\ & \text { FT3 /SEC } \end{aligned}$	NO. OF PASSES	P ERCE NT FLOOD
1	2.00000	22.514	1.3600	1.00	34.67
2	2.00000	22. 262	1. 3517	1.00	34.35
3	2.00000	22.108	1.3458	1.00	34.15
4	2.00000	21.994	1. 3412	1.00	34.01
5	2.00000	21.865	1.3368	1.00	33.86
6	2.00000	21.662	1. 3314	1.00	33.66
7	2.00000	21.281	1.3233	1.00	33.29
8	2.00000	20.455	1. 3086	1.00	32. 54
9	2.00000	18.549	1.2777	1.00	30.83
10	2.25000	81.112	1. 2962	1.00	37.91
11	2.25000	81.596	1. 3042	1.00	38.34
12	2. 25000	81.941	1. 3096	1.00	38.66
13	2. 25000	82.209	1.3136	1.00	38.90
14	2. 25000	82.449	1.3170	1.00	39.12
15	2.25000	82.708	1.3207	1.00	39.36
16	2. 25000	83.046	1. 3255	1.00	39.68
17	2.25000	83.538	1.3325	1.00	40.15
18	2.25000	84.258	1. 3424	1.00	40.83
19	2.25000	84.842	1. 3491	1.00	41.42
20	2.25000	85.090	1.3391	1.00	41.57
21	REB OI LE R	40.208	0.00000		

NOTE: DIAMETER IS EXPECTED TO BE WITHIN 3 IN OF GLITSCH BULLETIN 4900 DESIGN PROCEDURE FOR BALLAST TRAYS.

In the input you can set:
l. system factor
2. Dercent of flood
3. number of passes
4. spacing of trays

The optional commands in the DIStillation module are:

GLItsch SYStem factor $=$
GLItsch PERcent flood $=$ GLItsch number of PASses $=$ GLItsch SPAcing of trays (L units) $=$ (default $=2 \mathrm{ft}$.

If you specify PRISWI=2 (or greater), you will automatically get one page of output containing the Glitsch shortcut tray sizing output.

The Glitsch option is based on short-cut methods provided to ChemShare by Glitsch, and are generally within about 3 inches of the calculated results in their handbook for tray sizing. However, the results presented are not to be taken as performance guarantees. Results presented in our programs should be sent to Glitsch for rigorous calculations and guarantees that Glitsch may want to make. Address inquiries to your local Glitsch representative or send them to:

Glitsch, Inc.
P. O. Box 226227

Dallas, Texas 75266
Phone Number: (214)631-3841

This option is available on version 9.1.

Multiple Flash Module

A new module has been developed which performs different types of flash calculations. The module can simultaneously flash up to 50 outlet streams and can perform the following flash options:

- adiabatic flash
- isothermal flash
- isentropic flash
- adiabatic flash with addition or subtraction of heat
- bubble point temperature or pressure
- dew point temperature or pressure
- flash calculation at specified liquid molar or mass fraction
- water dew point (for separate water phase)

The two options graphically presented are:

1. One input stream, up to 50 outlet streams.

(all outlet streams have same composition/flowrate as inlet stream).
2. Each input stream has 1 outlet stream

(each inlet stream has different composition/flowrates).

This module does not do phase separations. This is usually done in the FLAsh or VALve module.

This feature is available on versions 9.0 and greater.

Let's look at a couple of examples.
Example 1

Conditions on outlet - stream 2 - bubble point temperature stream 3 - dewpoint temprature stream 4 - liquid to feed ratio set to . 7 stream 5 - pressure out set to 30 psia stream 6 - temperature out set at $95^{\circ} \mathrm{C}$

Coding
MUL FLASH $37=$ Fl0, $1,-2,-3,-4,-5,-6$
$\mathrm{BUB}=2, \mathrm{DEW}=3$, LIQ FRAC=4, $7 \mathrm{PRE} \operatorname{OUT}=5,30, \operatorname{TEM} \operatorname{OUT}(\mathrm{C})=6,95$

Example 2

Conditions on outlet : stream 11 - isentropic flash stream 12 - add 3.4 MMBTU/HR stream 13 - make it a liquid

Coding
MUL FLASH37=F10,1,2,3,-11,-12,-13
ISEN=11, $\mathrm{HEAT} \operatorname{ADD}(\mathrm{BTU} / \mathrm{HR})=12,3.5 \mathrm{E} 6, \mathrm{LIQ}=13$

Except for the isothermal flash, you can specify either TEMperature OUT or PREssure OUT, plus one other specification. The program will then solve for the corresponding pressure or temperature. If both TEM OUT and PRE OUT are specified, temperature will be varied. If no information is given for an outlet stream, the inlet conditions will be used.

This MULtiFLAsh module gives you tremendous flexibility not previously available. Remember each stream will appear in the STREAM SUMMARY and STREAM DETAILS, so all the phase properties for each stream are presented at the specified conditions.

EQUIPMENT Module Commands (jl and j2 refer to outlet stream numbers)
$\underline{\text { ADIabatic }=j 1, j 2, ~}$
Specify the stream numbers for adiabatic flash calculations.
BUBble point $=j 1, j 2, \quad$. . .
Specify the stream numbers for bubble point calculations.
DEW point $=j 1, j 2, \quad, . \cdot$.
Specify the stream numbers for dew point calculations (Hydrocarbon dew point for immiscible flash)

DEW WATer $=j 1, j 2$,
Specify the stream numbers for water dew point
calculation (for immiscible flash only)
HEAt ADDed (H units/t units) $=j 1$, Spec., j2, Spec, . . .
Specify the stream numbers for adiabatic flash and amount(s) of heat added or subtracted from the flash (a negative value indicates heat subtracted) in pairs.

ISEntropic $=j 1, j 2, \quad .$.
Specify the stream numbers for isentropic flash
LIQuid $=j 1, j 2, \quad . \dot{f}$.
Specify the outlet stream numbers to be set to liquid phase at the inlet $T \& P$

LIQuid FRAction $=j 1$, Spec., $j 2$, Spec.
Specify the stream number(s) and the desired molar
liquid fraction(s) in pairs
LIQuid FRAction (MASs) $=j 1$, Spec., j2, Spec. . . Specify the stream number (s) and the desired mass liquid fraction(s) in pairs

PREssure OUT (P units) $=j 1$, Spec., j2, Spec., . . . Specify the stream number(s) and the desired outlet pressure(s) in pairs

TEMperature OUT (T units) $=j 1$, Spec., j2 , Spec. Specify the stream number(s) and the desired outlet temperature(s) in pairs
$\underline{\text { VAPor }}$ stream $=j 1, j 2$,
Specify the outlet stream numbers to be set to vapor phase at the inlet $T \& P$

Phase Map

A new module, PHAse MAP, has been included in DESIGN/2000 for phase envelope calculations of hydrocarbon systems. The new module uses improved numerical techniques to perform rigorous calculations around the critical region where, previously, numerical difficulties have occurred. At the present time the PHAse MAP module uses only the SOAVE equation of state for calculation. However, the calculation will still be performed using the SOAVE equation when any of the following thermo options are specified in the GENeral section: APISOAVEK, PENK, STDK, KVAL, RKK, BWRK, and BWRSK. To use the new module, specify the following commands.

> PHA MAP1 $=$ PHAS, $1,-2$
> TEM BUB (T units)=
> TEM DEW (T units) $=$
where the temperature of the bubble point and dew point are initial guesses.

In addition to an improved calculation of bubble and dew point curves, the module also calculates constant liquid fraction lines within the envelope. A maximum number of 5 constant liquid fraction lines is allowed. When you request this phase map, the liquid fraction line of .50 is automatically generated.

Additional commands are:

> LIQuid FRAction TEMperature GUEss(T units) INItial PREssure(P units)

The values entered on the right of the equal sign in each of these commands correspond. The last two commands are optional. If TEM GUE is not specified, the program will default a reasonable starting value for calculation. If INI PRE is not specified, then the calculation uses $P=10 \mathrm{~atm}$. as a starting pressure. The results are presented in tabular form for bubble and dew points as well as constant liquid fraction lines. The critical temperature and pressure are now printed at the beginning of the tables. Also, a plot of the envelope is included for all curves. A sample output is shown below. This is available on versions 9.0 or greater, and is on our PRIME now.

```
CR IT ICAL TEMP ERATURE : 40.804F
CRITICAL PRESSURE : 2191.872PSIA
```

RESULTS FOR LIGUID FRACTION $=0.0000$

TEMP F	$\begin{aligned} & \text { PRES } \\ & \text { PSIA } \end{aligned}$	$\mathrm{Z}-\mathrm{FACTOR}$	ENTHALPY BTU/LBMD
198.3043	293.9199	0.95740	1748.3
202. 2637	323.9984	0.95430	1778.7
206. 1174	356.9780	0.95099	1806.0
210.2104	396.9112	0.94710	1832.1
214.5001	445.6850	0.94249	1855.3
218.9069	505.8105	0.93701	1873.0
$\cdots 1$	5 P	n. 93041	

	RESULTS TEMP F	$\begin{gathered} \text { FOR LIQUID } \\ \text { PRES } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { FRACT ION }=1.0000 \\ Z-F A C T O R \end{gathered}$	ENTHALPY BTU/LBMD
1	-152.2015	293.9199	7. $74093 \mathrm{E}-02$	-6610.9
2	-146.6597	325.1846	$8.50261 \mathrm{E}-02$	-6514.3
3	-141.2446	357.7983	$9.29453 \mathrm{E}-02$	-6419.0
4	-135.7843	392.8046	0.10142	-6322.0
5	-130.2899	430.2338	0.11047	-6223.6
6	-124.7736	470.0912	0.12010	-6123.9
7	-119.2495	512.3523	0.13030	-6023.2
8	-113.7330	556.9591	0.14106	-5 ${ }^{\text {- }}$
9	-100 2119			

Heating and Cooling Curves

You can now have heating and cooling curves calculated without using the HEAt EXChanger module. This will allow you to get curves for the rigorous distillation condenser and reboiler as well as any stream in the flowsheet. The output, as shown below, includes the plotted results of the tabular data. This feature is implemented on version 9.0 or later, and is available to users on our PRIME computer systems now.

The new commands are:
A. In the rigorous distillation unit (DIS)

CONdenser CURve

and/or

REBOiler CURve

B. For streams, add to the GENeral section

HEAT CURve i
and/or
COOL CURve i
where $i=$ stream number

With either of these 2 commands in the GENeral section, you will automatically get 10 increments from the stream temperature to the bubble or dew point with no pressure drop. To modify any of these options, the command in its full form is:
where

$$
\text { COOL CURve (T units, } P \text { units) } i=x, y, z
$$ HEAt CURve (T units, P units) $i=x, y, z$

i $=$ stream number
$\mathrm{x}=$ delta T (or specify BUB or DEW)
$y=\operatorname{delta} P$
$z=$ number of increments

For example:
COOL CURve $12=250,40.3,15$

This will generate a cooling curve with a delta T of 250 degrees F from the temperature of stream 12 with a pressure drop of 40.3 psi distributed equally across the 15 increment curve.

An example of the output using the COND CURve command on the distillation column is shown below. This is one feature which was added as a result of customers' requests. If there are other options or features you would like to see in the programs, please let us know.

Simplified Input on Feed Streams

If you have a flowsheet in which the same stream composition and/or conditions are being used in several places, you can use this new feature to avoid typing in the stream data numerous times.

For example:

2

6

Streams: 1,5 and 9 have the same FLOWs and T, P
Streams: 2,6, and 10 have the same FLOWs and Tr, P

```
* COPIED STREAMS
HEA EXCl=OVHD, \(1,2,-3,-4, T E M\) APP \(=10\)
HEA EXC2=BOTS, 5, 6, \(-7,-8\), TEM APP \(=20\)
HEA EXC \(3=\) HED \(1,9,10,-11,-12\), TEM APP \(=40\)
GEN ,
\(\mathrm{COM}=4,5,6,7,8,10,11\)
TP (C, MMHG) \(1=80,210\)
FLO (LB/HR) \(1=2000,400,600,150,200,51,250\)
TP (C, MMHG) \(2=40,169\)
FLO (LB/HR) \(2=70,90,350,5,180,650,20\)
TP5=TP1
FLO (LB/HR) 5=FLOl
TP6=TP2
FLO (LB/HR) 6=FLO (LB/HR) 2
TP ( \(\mathrm{C}, \mathrm{MMHG}\) ) \(9=\mathrm{TP}\) ( \(\mathrm{C}, \mathrm{MMHG}\) ) 1
FLO9 \(=\) FLO
\(T P 10=T P 2\)
FLO10 \(=\) FLO2
```

END
For streams which have the same flow (inlet, recycle) you don't have to retype all the information. Just tell the program which stream has the same flow. The same can be done for the TP information. The TP copy stream does not have to be the same as the flow copy stream. The example above illustrates that input units are not needed on the copystream commands, and have no effect if they appear.

This option is available on versions 9.0 or later.

Feeds To The Distillation Column

We have added a feature to the rigorous distillation unit which allows you to specify that a feed is at its bubble point, dew point or at a specific liquid to feed ratio. The resultant temperature is printed in the feed flash summary before the column calculation. To use any of these features simply add any of the following commands to the DIStillation equipment input:

BUBble point $=j 1, j 2,$. .
DEW point $=j$
LOF $\quad=$ fraction, or $\quad=$ fraction,fraction,...
VAPOr $\quad=j$ (for each feed in top

LIQuid $\quad=j$
where j is the stream number of the feed stream. The LOF (liquid to feed ratio) values are entered in the same order as the LoCation of FEEds command. A zero value of LOF causes that stream to be treated in the normal fashion ie - it will be flashed from the temperature and pressure given for the feed to the tray pressure. The phase of a feed can also be forced with a LIQ or VAP command. For example, to set a bubble point temperature on feed 1 and dewpoint temperature for feed 2, the commands are:

```
DIS5=CONT,17,24-3,-4,ABS
TRA=7,LOCFEE=1,8,
BUB=17,DEW=24
```


Separator Sizing

We are now able to offer preliminary vessel sizing calculations for flash drums and accumulators performing single stage liauid-vapor separation. This is the second in a series of sizing capabilities which allow the process engineer to size equipment in his flowsheet simulation.

The separator vessel corresponds to either a FLAsh drum or a VALve module on the DESIGN/2000 flowsheet and can be sized as either a vertical or horizontal vessel. Flexible input specifications are available with reasonable defaults supplied for values not specified. Output contains relevant process and mechanical information. For vertical vessels, a scaled vessel layout showing dimensions and nozzle locations is also provided.

A simple example of input and output is shown below:
*EXAMPLE OF VERTICAL SEPARATOR SIZING
FLASH DRUM $19=\mathrm{S} 306,16,-11,-44$, VERTICAL
GENERAL
COMPONENTS $=2,3,4$
FLOW $16=800,100,100$
TP16 $=-45,290$
END

CONDITIONS

LİUID FLOW RATE	T-P	1.9917	GAL/MIN
VAPOR FLOW RATE	T-P	200.73	FT3/MIN
TOTAL FLOW RATE	T-P	202.72	FT3/MIN
TEMP ERATURE		-45.000	LEG F
PRESSURE		290.00	PSIA
PROP ERTIES			
DENS ITY	VAPOR	1.3722	IB/FI3
LENGITY	LIquid	31.152	IB/FT3
IENSTTY	MI XED	1.6648	IB/FTI3
ZFACTOR	VAPOR	0.88022	

iesign parameters

K CONSTANT	IEFAULT	0.35000	FT/SEC
MIN DISENGAGING HEIGTT	DEFAUTT	3.0000	FT
MLN LIQ TO INLET HEIGTT	DEFAULT	2.0000	FT
MIN IEVEL NOZZIE HEIGHT	DEFAUTT	1.5000	FT
MIST ELIMINATOR	DEFAUT	0.50000	FT
IESIGN PRESSLRE	EEFALLT	319.00	PSIA
ALLOWABIE STRESS	DEFALT	15015.	PSIA
JOINT EFFICIENCY	DEFALLT	1.0000	
CORROS ION ALLOWANCE	EEFAUT	0.12500	IN.
weight percen allowance	EEFAUT	20.000	

EESULTS

ALLOWABIE VAPOR VELOCITY	1.6305	FT/SEC
ACTLAL VAPOR VELOCITY	1.1347	FT/SEC
dIAMETER BASED ON SEPARATION	1.6243	FT
SUTPABIE DIAMETER USING PIPE I.D.	23.250	IN.
PIPE NOMINAL DIAMETER	24.000	IN.
SUTABIE IENGIH	8.0000	FT
SURGE TIME TO HLL	17.764	MIN
HIG LIgUID LEVEL (HLL) HEIGHT	1.5000	FT
HLL TO INLET HEIGTT	3.0000	FT
dISENCAGING HEIGHT	3.0000	FT
WALL THICKNESS (STD)	0.37500	IN.
MIN SEELL THICKNESS	0.25047	IN.
MIN HEAD THICNNESS	0.24781	IN.
APPFOX WEIGHT OF STEEL VESSEL(EMPTY)	53282	IB
APPPOX WEIGTT OF VESSEL (FULL)	1267.6	IB
APPFOX TOTAL WEIGHT INC. ALLOWANCE	1907.0	IB
INGULATION MAY BE NEELED SINEE TEMP	-45.000	LEG F

****** SEPARATOR SIZ ING RESUTS FOR VERI SEPARATOR

NCZZIES	A	B	C	
	INLET	VAP OUT	LIQ OUT	
MINIMUM VELOCITY	46.502	51.220	10.750	FT/SEC
ACTUAL VELOCITY	68.875	68.198	6.0900	FT/SEC
MAXIMMM VELOCITY	77.503	85.366	17.917	FT/SEC
DIAMETER (O.D.)	3.0000	3.0000	1.0000	IN.
NOIE: MINIMIM NOZZIE DIAMETER IS SEIECTED				

The line sizing capability announced in the May ' 82 newsletter has been further enhanced to allow you to make many different specifications. This is now available in DESIGN/2000 version 9.0.

The following sample sizes one horizontal two-phase line and one vertical gas line to meet your maximum velocity specifications.

$$
\begin{aligned}
& \text { SIZE LINES } \\
& \text { USE STREAMS }=1,3 \\
& \text { DIRECTION OF FLOW }=\text { HORIZONTAL,UP } \\
& \text { MAXIMUM VELOCITY }(\mathrm{FT} / \mathrm{SEC})=20,10 \\
& \text { PIPE SIZE CODE }=2 * X X S
\end{aligned}
$$

These commands form a "sizing section" which can be coded anywhere in your
*input file, just like the GENeral section.
Three pipe sizes are reported for each line: T represents the target size (i.e. smallest which satisfies your specification). Flow conditions for one size larger (L) and smaller (S) are also reported for comparison. In the two phase case the proximity to flow regime boundaries is illustrated on the Baker chart for each of the three sizes.

UTS ING METHOD OF DARCY
ASSUMING IS OTHERMAL FLOW IN VERTICAL (UP) DIRECIION

The transmission LINE module is now available in DESIGN/2000 in addition to the existing line sizing capability. The LINE module can be connected to any other equipment modules in a flowsheet, such as separators and compressors, in order to simulate a long transmission line. Simple networks or gathering systems consisting of several lines can also be modelled. Lines can be gas, liquid or two-phase and phase change is detected if it occurs. Pressure drop and flow regime are predicted along the line and the resulting outlet pressure is used in downstream calculations. The calculation methods used are the same as for line sizing and are principally applicable to hydrocarbon or hydrocarbon and water systems.

Several line sections of different lengths and elevations can be modelled in a single LINE module. Results are tabulated for each of the node points specified along the line. Several LINE modules may be used to model a transmission line with intermediate compression and junctions as shown below. For two phase lines a Baker flow regime map is given for each LINE module to show proximity to flow regime boundaries.

Different diameter case studies can be made in a single LINE module calculation simply by specifying several diameters. Pressure and other profiles along the line can be plotted according to user specifications. Points on the curve correspond to the user's node points. Several LINE modules can be included in a single profile plot of a typical transmission line.

With the transmission line a part of DESIGN/2000, you can utilize all the flexibility of DESIGN/2000 including use of the CONTroller. For example, below we have a simplified platform, 10 miles offshore. We can now model the complete process on the platform, plus review the transmission system and make process changes based upon onshore delivery constraints.

In the example below, we have a delivery pressure of 1,500 psia that must be met. We have a CONTroller monitoring the onshore pressure and adjusting the outlet pressure of the Compressor on the platform until the delivery pressure is met.

The output includes:

1. Heat and material balance
2. Transmission lines including frictional and elevation effects
3. Separator sizing
4. Horsepower requirements
5. Graphical output of pressure and elevation profiles along the line.

Except for item 1, all the other features are unique to ChemShare's DESIGN/2000 program.

This capability is available in DESIGN/2000 version 9.0.

* DESIGN. OFFSHOREI

GAS LINE WITH FIXED ONS HORE PRESSURE
FLASH DRUM $1=\operatorname{SEPR}, 1,-2,-3$, VERTICAL
COMP RESSOR $4=$ COMP, 2,-8, ENTROPY, PRESSURE OUT $=1600$
LINE $7=$ LINE, 8,-11, NOMINAL DIAMETER (IN) $=12$, DOWN, LENGTH $=150$ LINE $8=$ LINE, $11,-12$, NOMINAL DIAMETER (IN) $=12$, LENGTH (MILES) $=10 * 1$ ELEVATION $(\mathrm{FT})=3 * 10,5,2,20,30,3 * 10$

CONTROLLER $10=$ FIXP, 12, -13 , VARY PRESSURE OUT (MIN=1500,MAX=2500) OF OOMPRE 4 INTT IL PRESSURE FROM STREAM $12=1500$ (TOL=25)

GENERAL
COM $=46,49,2,3,4,5,6,7,8,10,11,12,13,14,62$
IMM=62
FLOW $1=5,3,5000,3000,1000,700,500,233,339,226,427,207,266,234,100$
$T P I=120,1400$
SOAVEK
PLOT PRESSURE AND ELEVATION AGA INST LENGTH FOR LINES $=7,8$
END

RESULTS OF LINE 7 CALCULATION US ING 12.0 IN. NOMINAL PIPE LINE IS VERTICAL (DOWN) AND ISOTHERMAL ELEVATIONS ARE REPORTED RELATIVE TO INLET NODE. INS IDE DIAMETER 12.00 IN. PIPE SCHEDULE CODE STD METHOD FOR FRICTION PRESSURE DROP IS DARCY-WEISBACH METHOD FOR ELEVATION PRESSURE DROP IS PHASE DENS ITY PRESSURE DROPS (DELP) ARE PER 100 FT

LINE	LENGTH	ELEV.	TEMP.	DELP-FRIC	DELP-ELEV	PRESS.	VELOC.	LIQUID	FLOW
NODE	FT	FT	DEG F	PSIA	PSIA	PSIA	FT/SEC	HOLDUP	REGIME
1	0.	0.0	170.15	0.8288	-6.4773	1995.5	2.5	0.0000	TURB
2	150.	150.0	170.15	0.8252	-6.5062	2004.0	2.4	0.0000	TURB

RESULTS OF LINE 8 CALCULATION US ING 12.0 IN. NOMINAL PIPE LINE IS HORIZONTAL AND ISOTHERMAL ELEVATIONS ARE REPORTED RELATIVE TO INLET NODE. INS IDE DIAMETER 12.00 IN. PIPE SCHEDULE CODE STD
METHOD FOR FRICTION PRESSURE DROP IS DARCY-WEISBACH METHOD FOR ELEVATION PRESSURE DROP IS PHASE DENS ITY PRESSURE DROPS (DELP) ARE PER 100 FT

LINE	LENGTH	ELEV.	TEMP.		DELP-FRIC	DELP-ELEV	PRESS.	VELOC.	LIQUID	FLOW
NODE	FT	FT	DEGF	PSIA	PSIA	PSIA	FT/SEC	HOLDUP	REGI ME	
1	0.	0.0	170.15	0.8252	6.5062	2004.0	2.4	0.0000	TURB	
2	5280.	10.0	170.15	0.8443	6.3548	1959.8	2.5	0.0000	TURB	
3	10560.	20.0	170.15	0.8651	6.1981	1914.6	2.6	0.0000	TURB	
4	15840.	30.0	170.15	0.8878	6.0359	1868.3	2.6	0.0000	TURB	
5	21120.	35.0	170.15	0.9124	5.8689	1821.1	2.7	0.0000	TURB	
6	26400.	37.0	170.15	0.9394	5.6964	1772.8	2.8	0.0000	TURB	
7	31680.	57.0	170.15	0.9699	5.5136	1722.1	2.9	0.0000	TURB	
8	36960.	87.0	170.15	1.0041	5.3218	1669.2	3.0	0.0000	TURB	
9	42240.	97.0	170.15	1.0416	5.1265	1615.6	3.1	0.0000	TURB	
10	47520.	107.0	170.15	1.0839	4.9232	1560.1	3.2	0.0000	TURB	
11	52800.	117.0	170.15	1.1318	4.7115	1502.4	3.4	0.0000	TURB	

****P LMP /COMP RESSOR/E XP D****

EOUIPMENT NO.
4
$\begin{array}{lr}\text { EXTERNAL NAME } & \text { COMP } \\ \text { COMP. STAGES } & 1.000\end{array}$
WORK CAPACITY
HP 0.1000 E 07
OUTLET PRES. PSIA
TYP E
THERMAL EFFIC.
1996. ENT ROP Y 0.6500
(OR POLYTROP IC COEFF.)
FUEL SCF/MR 4083.
REAL WORK HP 500.2
WORK IS NE CAT IVE FOR EXP ANDER
CP/CV
1.241

LINE PLOT 1 OF PRESSURE AND ELEVATION AGA INST LENGTH

We have now added to REFINE versions 9.0 and greater, the ability to model quench columns where free water can form along with a liquid hydrocarbon and vapor on any tray in the column.

Only a few simple commands are needed to use it. This example describes the commands for this feature.

Simplified quench or water wash column

LOC SIDE DRAW WATER = 3
LOC SIDE DRAW $=3$ (needed if LOC SID WAT used)
PRODUCT $=750,630,0$
LOC PUMP $\quad=3,1,9,8$
LOC PUMP WATER $\quad=1,0$ (1 if water, 0 if HC)
PROD PUMP $\quad=600,1200$ (lbmol/hr. HC and water)
$\mathrm{P}-\mathrm{S} \quad=.98, .99, .98,7 * 0$ (optional but recommended for estimate of the mole fraction of water on each tray)

Some interesting points are:

1. You can decant water on any tray
2. You can have as many decants as needed
3. The pumparound can be pure water
4. We do not need coolers on each tray as SIMSCI does to create dummy pumparound affects

Simplified Product Specifications on Refine

REFINE is the only major rigorous heat and material balance simulation program that can meet a rigorous product specification on an ASTM or TBP basis. In order to set these specifications on the rigorous runs, the coding convention was $18 . \mathrm{XXX}$ for $A S T M$ and $17 . \mathrm{XXX}$ for TBP such as;
$\underline{\text { PROSPEC }}=380,18.095,2,3,580,17.090,3,4$
The above command specifies: an ASTM 95\% of $380^{\circ} \mathrm{F}$ on product 2 by varying product 3 and a TBP 90% of $580^{\circ} \mathrm{F}$ on product 3 by varying product 4

To simplying this coding it is now possible to use ASTM or TBP directly as follows:
$\underline{\text { PRO }} \underline{\text { SPEC }}=480, \operatorname{ASTM} 95,2,3,580, T B P 90,3,4$
This feature is available on REFINE versions 9.0 and later.

AIChE Paper on CHEMTRAN

Dr. John Adams presented a paper on November 17 at the Los Angeles AIChE convention entitled "Automation of Group Contribution Techniques For Estimation of Thermophysical Properties". He discussed the computer algorithms which predict properties of mixtures using only two-dimensional chemical structures. These techniques are being applied within CHEMTRAN and have proven to be accurate for these properties. A copy of the paper can be obtained from Dr. John Adams by calling him at (713)627-8945.

Transport Properties Update

ChemShare has been working on a major update of its pure component data base. As you know this is the largest commercially available database (857 components) and contains all of the data necessary to generate K values, enthalpies, and densities for process simulation.

This data base is unique in that the data was collected and evaluated by ChemShare. Each datum is traceable to its original source in the literature. In addition, software was developed to perform automatic checks and evaluations of data to rule out inconsistencies occurring in the literature or due to transposition of the data from the literature to the programs.

Now ChemShare has performed a similar task for transport properties and surface tension. We are in the process of adding to the data base the following temperature dependent properties:
1.) Surface Tension
2.) Vapor and liquid viscosity
3.) Vapor and liquid thermal conductivity

Additional mixture correlations for these properties are also being added to DESIGN/2000 so that these properties can be printed in the detailed stream summary. This addition represents about one year's effort in sorting through the literature to find available experimental data. For chemicals where no data exist, predictive techniques have been used.

Of course, it is possible you may have a chemical which isn't in the data base. We are also providing commands to enter any available data you may have. However, if no data is available we have provided a powerful new command to predict data with the STRUCTURE command.

The STRUcture command has been available in ChemTran for a couple of years for prediction of other properties. It allows you to predict thermophysical properties with only a two-dimensional chemical structure. ChemTran takes this input and automatically analyzes it in terms of group-contributions and other characteristics of the chemical structure. This eliminates the need for you to proceed through the time-consuming and error-prone process of applying group contribution techniques by hand.

You will also be able to print out tables, and eventually plots of saturated pure component properties.

Some of the tables are already available in version 9.0. A sample input showing the commands for printing tables of vapor pressure versus temperature and ideal gas heat capacity versus temperature is shown below:

The structure command is for 2,4 dichlorotoluene.

* SAMP LE OF PURE COMP ONE NT DATA GENERAT ION

COMP ONE NT $=200$
STRUCTURE $200=\mathrm{Cl}-\mathrm{C} 2, \mathrm{C} 2=\mathrm{C} 3, \mathrm{C} 3-\mathrm{C} 4, \mathrm{C} 4=\mathrm{C} 5, \mathrm{C} 5-\mathrm{C} 6, \mathrm{C} 6=\mathrm{C} 1, \mathrm{C} 1-\mathrm{C} 7$,
C 2-CL8, C4-CL9
TAB P-T $200=10,150,5$
TAB CP-T $200=10,150,5$
RENON K
LATENT HEAT
METRIC UNITS OUT
END

The output is shown on the following pages:

PARAMETERS FOR TEMPERATURE DEPENDENT EGUAT IONS

P ROP ERT Y	EQUATION	P ARA ME TE RS	UNITS
IDEAL GAS HEAT CAPACITY	T**3	$\begin{aligned} & C 1=-.53790 \\ & C 2=0.14144 \\ & C 3=-.10450 \mathrm{E}-03 \\ & C 4=0.29805 \mathrm{E}-07 \end{aligned}$	K , KCAL / KG MO/ K

COMP	200 : NONS TANDA RD--200	
		IDEAL GAS
PT.	TE MP	HEAT CAPACIITY
NO.	(C)	(KCAL/KGMO/K)
1	-12.216	29.7827
2	-9.438	30.0404
3	-6. 660	30.2968
4	-3. 882	30.5520
5	-1.104	30.8059
6	1.673	31.0586
7	4.451	31.3101
8	7.229	31.5603
9	10.007	31 on 93
10		
11		

COMP ANE NT	200 : NONS TANDA RD--200	
PT.	TEMP	VAPOR P RESSURE
NO.	(C)	(KG/CM2)
1	-12.216	$2.045901 \mathrm{E}-05$
2	-9.438	$2.680913 \mathrm{E}-05$
3	-6. 660	$3.491121 \mathrm{E}-05$
4	-3.882	4.51870 6E-05
5	-1.104	$5.814520 \mathrm{E}-05$
6	1.673	$7.439498 \mathrm{E}-05$
7	4.451	$9.466223 \mathrm{E}-05$
8	7.229	$1.198086 \mathrm{E}-04$
9	10.007	$1.508499 \mathrm{E}-04$
10	12.784	1.889 कn 3E-0 4
11	15.562	$2-04$
12	18. 340	
13	n- \cdot n	

ChemShare No Longer On UCC in U. S. and Canada

After 10 years of mutual service, ChemShare will no longer be offering our programs on UCC's computers. This is effective December 31, 1982.

Unfortunately the UNIVAC 1108 using EXEC2 is simply too small to be able to handle our programs, even with extended core. For the past 2 years, updating our programs has become very difficult because of the size limitation. Our programs have grown considerably due to our development efforts, and of course with REFINE being incorporated into DESIGN/2000, the problem is about to become worse.

We have sent letters to all our UCC customers during October to tell them of the change, and have been calling each user to get them switched to another service. Any files on account numbers which were assigned by ChemShare on the UCC computer will be deleted as of January 1, 1983. If there are any questions related to this, please call Ken Migas at (713)627-8945.

New Phone Number For ChemShare's Computers

We have installed a new phone system for our PRIME computer service. This will provide a much stronger signal to your computer terminal, and therefore eliminate a lot of noise on the phone lines coming through our switchboard. The new number is (713)439-0050 and most of our customers are already aware of this. This number is on its own rotary and the computer answers the phone call directly, rather than via the switchboard operator. Questions related to this change can be addressed to Ken Migas at (713)627-8945.

VESSEL DESIGN Program on ChemShare's Computer

We are pleased to announce that VESSEL, a program for designing and analyzing pressure vessels is now on our PRIME 750. VESSEL is available through a license agreement with Disasu Inc. of Cypress, Texas, the author and developer of the program. VESSEL operates interactively and utilizes keyword, free format techniques. As a result, it is easy to use for data entry and reviewing output.

The ESTIMATE Generation Capabilities may be of particular interest to you. As part of VESSEL's final design, an estimate report is produced. The costs for various material components and labor rates are stored within the program. Specifically, VESSEL can produce a material takeoff report, a labor manhour takeoff report and a total vessel cost report.

If you are interested in more information on VESSEL's capabilities please call Ken Migas at (713)627-8945.

A new system program called "PRINT" for top of forms control is available for timesharing terminals. This gives you an output file just like a line printer, with each new page starting at the top
"PRINT" is executed at the system level and provides top of forms and page control. The procedure for using PRINT is as follows:

OK, PRINT
(PRI $\overline{\mathrm{NT}} \mathrm{REV} .18 .0$)
Which file is to be printed? OUT.TEST
Does the terminal recognize form feeds? YES
Enter line to start: 1
Enter number of lines to be printed: 99999
Position paper to top of page and press RETURN
The file OUT.TEST will be printed with top of forms control in effect.

Password Control

You can change your password to make use of the protection provided by the PRIME 750. To change your password type the following after login is complete:

OK, PASSWD NEW NEW
NOTE: When you login the next time the new password will be in effect.

Using the PRIME for FORTRAN Program Execution

If you have FORTRAN programs which you use frequently, our PRIME 750 can be extremely cost effective and easy to use. A number of our users have compiled FORTRAN programs and execute them with a general reduction in computer costs. Additionally, they are quite satisfied with the turnaround and service which we provide.

We offer free evaluation for program installation on our PRIME system and in most cases, programs can be loaded and operational in just an afternoon.

If you are interested in saving money please give Ken Migas a call at (713)627-8945.

Prime Configurations

In our last newsletter, we announced that ChemShare has become a Remarketer of Prime hardware. This designation means that ChemShare can sell you a Prime computer with our software, and provide favorable financial terms.

That announcement generated a lot of interest from our customers, and we have learned that there is also a lot of confusion about computers. The biggest confusion is in the basic terms, such as "mini" vs. "micro", and "virtual memory". We would like to clarify these terms as well as describe a new PRIME computer, the small 2250.

A micro computer is essentially the same as what is being called the "Personal Computer". It represents a computer that costs about $\$ 5,000$ or less. Typically it can have only one person at a time using the machine and has a very small memory, such as 64,000 bytes. The CPU is either an 8 bit or 16 bit machine. It usually has 1 or 2 floppy disk units, a keyboard and a connection to $T V$ screen for input and output. These computers generally use the BASIC language, while some are starting to have limited FORTRAN and PASCAL. These machines are very good for small programs, particularly where they are dedicated to a specific application. Because of the CPU type, some do not have internal checks for errors on the hardware; it is possible that the same problem run twice could give different results.

A mini computer is really only mini in terms of the cost of the machine. Machines made by Prime or Digital Equipment can run as fast as many bigger machines, but they just can't handle as many jobs simultaneously as some of the bigger machines. These mini computers usually cost from $\$ 70,000$ to $\$ 250,000$, and can handle a tremendous variety of computations. They typically are 32 bit CPU's with error checking, and have from 5l2,000 bytes to $2,000,000$ bytes of real memory. They usually can handle from 4 to 64 terminals such as CRT display units, have large rigid disk units and a high speed printer. They are supplied with most the common computer languages such as BASIC, FORTRAN, COBOL, and PASCAL. They are as Dowerful as large scale computers of 5 years ago, but they cost much less. Virtual memory simply is a feature that makes a computer with, for example, $1,000,000$ bytes of real memory think it has $4,000,000$ bytes of memory. Therefore a small machine can process much more work than was possible before. Also, very large programs such as ChemShare's can run on this type of computer easily and efficiently. Other machines without virtual memory, such as CDC or UNIVAC, require large programs to be broken down into pieces in order to run.

PRIME has just come out with a new computer, labelled the PRIME 2250 . This new computer is surprisingly small in size, small in price, and
large in performance.
The machine is compatible with the other PRIME series of computers, so that if you ever outgrow the computer, the next size computer can replace it and all the programs will run on the larger PRIME without reprogramming.

This computer would cost about $\$ 60,000$ in the U. S., and for this price you would get:
A. 500,000 Bytes of memory (large enough to run ChemShare's programs)
B. 68 Megabytes of disk storage
C. 4 CRT terminals
D. 1300 line per minute printer
E. 1 console for the computer
F. 1 tape back-up

On this machine, you could easily run our programs, write your own programs and use other software applications such as financial packages.

This new machine runs on the latest version of the operating system called PRIMOS, version 9. We are presently converting our programs to this machine at PRIME's offices in Houston, where a 2250 is available for demonstration.

If you have interest in reviewing this computer call Ken Migas at (713)627-8945.

PRIME Performance Monitor

ChemShare has developed software for monitoring the performance of any 50 series PRIME computer. This is important in trying to utilize the computer's power to find out areas which are causing any excessive loads, whether in memory, CPU, controllers, etc. In order to evaluate this, we have developed an extensive monitoring program which evaluates all the important computer operations and reports the performance in easy to read graphs. This software is normally sold to people who have their own PRIME computers. If you have interest in this software call Ken Migas at (713)627-8945.

ChemShare Corporation
P. O. Box 1885

Houston, Texas 77001
Tel: (713) 627-8945
Telex: 910-881-2793

ChemShare Process Systems Ltd. 327 Euston Centre London
NW1 3JG
England
Tel: (44) 01-387-2664
Telex: 85127192+

Dr. A. H. Maute
Softec
Industriestrasse 54
D-7000 stuttgart 80
West Germany
Tel: (07 11) 780-04-95
Telex: 8417255146

Engineering Management Services Ltd. Douglas Roberts Centre
Skeen Boulevard
P. O. Box 585

Bedfordview 2008
Republic of South Africa
Tel: 53-9030
Telex: 8-9041

ChemShare Process Systems Ltd.
Brook House
Church Street
Wilmslow
Cheshire
SK9 lat
England
Tel: 0625532113
Telex: 851666905+

Computer Engineering Applications
8th Floor
14 Queens Road
Melbourne
Victoria 3004
Australia
Tel: (03) 2676299
Telex: 790AA30333

Am \& Associates 311 Wassenaarseweg 2596 CV DEN Haag Netherlands

Tel: 070-28 1359
Telex: 33574

